18790 measured reflections 4635 independent reflections

 $R_{\rm int} = 0.028$

4333 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1methylpyridinium iodide monohydrate

Chotika Laksana,^a Pumsak Ruanwas,^a Suchada Chantrapromma^{a*} and Hoong-Kun Fun^{b*}

^aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: suchada.c@psu.ac.th, hkfun@usm.my

Received 13 November 2007; accepted 20 November 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.040; wR factor = 0.105; data-to-parameter ratio = 25.2.

In the title compound, $C_{16}H_{18}NO^+ \cdot I^- \cdot H_2O$, the cation is essentially planar, with a dihedral angle of $3.13 (16)^\circ$ between the pyridinium and benzene rings. The molecule adopts an Econfiguration with respect to the alkene double bond. In the crystal structure, the cations are packed in an anti-parallel manner through π - π interactions between adjacent pyridinium and benzene rings along the *a* axis, with centroid-tocentroid distances of 3.615 (2) and 3.630 (2) Å. Water molecules bind the iodide ions through $O-H \cdots I$ hydrogen bonds into layers. These layers link with the cations through weak $C-H\cdots O$ and $C-H\cdots I$ interactions.

Related literature

For values of bond lengths, see Allen et al. (1987). For related structures, see, for example: Chantrapromma et al. (2005, 2006); Chantrapromma, Jindawong & Fun (2007); Chantrapromma, Jindawong, Fun & Patil (2007); Chantrapromma, Jindawong, Fun, Patil & Karalai (2007); Jindawong et al. (2005); Zhang et al. (2000). For background to nonlinear optics, see, for example: Oudar & Chemla (1977); Williams (1984).

I. H₂O

Experimental

Crystal data

$C_{16}H_{18}NO^+ \cdot I^- \cdot H_2O$	$\gamma = 92.892 \ (2)^{\circ}$
$M_r = 385.23$	V = 796.81 (8) Å ³
Triclinic, P1	Z = 2
a = 6.9261 (4) Å	Mo $K\alpha$ radiation
b = 10.1857 (6) Å	$\mu = 2.01 \text{ mm}^{-1}$
c = 11.6303 (6) Å	T = 100.0 (1) K
$\alpha = 100.829 \ (2)^{\circ}$	$0.36 \times 0.15 \times 0.12 \text{ mm}$
$\beta = 97.399 \ (2)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2005)	
$T_{\rm min} = 0.528, T_{\rm max} = 0.797$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	184 parameters
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 1.14	$\Delta \rho_{\rm max} = 2.16 \text{ e} \text{ Å}^{-3}$
4635 reflections	$\Delta \rho_{\rm min} = -0.83 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W - H1W1 \cdots I1$	0.85	2.88	3.681 (3)	158
$O1W - H2W1 \cdots I1^{i}$	0.85	2.88	3.690 (3)	159
$C16-H16B\cdots O1W^{ii}$	0.96	2.49	3.346 (5)	148

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors thank Prince of Songkla University for financial support. The authors also thank the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) No. 304/PFIZIK/ 653003/A118.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2440).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chantrapromma, S., Jindawong, B. & Fun, H.-K. (2006). Acta Cryst. E62, 04004-04006.
- Chantrapromma, S., Jindawong, B. & Fun, H.-K. (2007). Acta Cryst. E63, 02020 - 02022
- Chantrapromma, S., Jindawong, B., Fun, H.-K., Anjum, S. & Karalai, C. (2005). Acta Cryst. E61, o2096-o2098.
- Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007). Acta Cryst. E63, o2321-o2323.
- Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2007). Anal. Sci. X-Ray Struct. Anal. Online, 23, x27-x28.

- Jindawong, B., Chantrapromma, S., Fun, H.-K., Yu, X.-L. & Karalai, C. (2005). Acta Cryst. E61, 01340-01342.
- Oudar, J.-L. & Chemla, D. S. (1977). J. Chem. Phys. 66, 2664–2668.
 Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
 Williams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690–703.
- Zhang, T.-Z., Ge, L.-Q., Zhang, D.-C., Zhang, Y.-Q. & Yu, K.-B. (2000). Jiegou Huaxue, **19**, 6–10.

Acta Cryst. (2008). E64, o145-o146 [doi:10.1107/S1600536807061375]

2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylpyridinium iodide monohydrate

C. Laksana, P. Ruanwas, S. Chantrapromma and H.-K. Fun

Comment

The design of nonlinear optical (NLO) materials is of great interest due to the various applications of NLO materials. At molecular level, such compounds are likely to exhibit large values of molecular hyperpolarizability (β) and they have to have polarizable electrons (conjugated π system) spread over a large distance (Oudar & Chemla, 1977). We have been previously synthesized pyridinium and quinolinium derivatives to study their non-linear optical properties (Chantrapromma *et al.*, 2005, 2006; Chantrapromma, Jindawong & Fun, 2007; Chantrapromma, Jindawong, Fun & Patil, 2007; Chantrapromma, Jindawong, Fun, Patil & Karalai, 2007; Jindawong *et al.*, 2005). The single-crystal *x*-ray structural study of the title compound was undertaken in order to establish the structure and conformation of the various groups. However, the title compound crystallized in the centrosymmetric *P*T triclinic space group and therefore does not exhibit non-linear optical properties (Williams, 1984).

The asymmetric unit of the title compound consists of the pyridinium cation, iodide anion and one water molecule (Fig. 1). The water molecule forms an O1W—H1W1···I1 hydrogen bond to the iodide ion (Table 1). The cation is essentially planar and exist in *E* configuration with respect to the C6=C7 double bond [1.342 (5) Å]. The dihedral angle between the pyridinium and benzene rings is $3.13 (16)^\circ$. The ethenyl unit is also planar with respect to the two aromatic rings with the torsion angles C4—C5—C6—C7 = $-1.1 (5)^\circ$ and C6—C7—C8—C13 = $3.8 (6)^\circ$. The ethoxy substituent deviates only slightly from the benzene ring plane, with a C14—O1—C11—C10 torsion angle of $5.3 (5)^\circ$. Bond lengths and angles are in normal ranges (Allen *et al.*, 1987) and the bond lengths and angles of the cation are comparable with those for closely related structures (Chantrapromma, Jindawong & Fun, 2007; Chantrapromma, Jindawong, Fun & Patil, 2007; Zhang *et al.*, 2000).

In the crystal structure, the cations are packed in an anti-parallel fashion through $\pi \cdots \pi$ interactions along the *a* axis with $Cg_1 \cdots Cg_2$ distances 3.615 (2) Å (symmetry code -x, 1-y, 1-z) and 3.630 (2) Å (symmetry code 1-x, 1-y, 1-z) where Cg_1 is the centroid of the C1–C5/N1 pyridinium ring Cg_2 is the centroid of the C8–C13 benzene ring. Water molecules bind to iodide ions by O—H…I hydrogen bonds forming layers. These layers are linked with the cations through weak C—H…O and C—H…I interactions, Table 1.

Experimental

The title compound was synthesized by mixing a solution (1:1:1 molar ratio) of 1,2-dimethylpyridinium iodide (2.00 g, 8.51 mmol), 4-ethoxybenzaldehyde (1.28 g, 8.51 mmol) and piperidine (0.72 g, 8.51 mmol) in hot methanol (45 ml) and refluxing for 3 hrs under a nitrogen atmosphere. The solid which formed was filtered, washed with cold ethanol and dried. Yellow single crystals of the title compound suitable for *x*-ray structure determination were recrystalized from methanol by slow evaporation of the solvent at room temperature over several days (Mp. 481–483 K).

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.85 ° and C—H distances in the range 0.93–0.97 Å. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.85 Å from I1 and the deepest hole is located at 0.63 Å from I1.

Figures

Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids and the atomnumbering scheme. The O—H…I hydrogen bond is drawn as a dashed line.

Fig. 2. The crystal packing of (I). The O—H…I hydrogen bond and weak C—H…O and C—H…I interactions are drawn as dashed lines.

2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylpyridinium iodide monohydrate

Crystal data

$C_{16}H_{18}NO^+ \cdot \Gamma \cdot H_2O$	Z = 2
$M_r = 385.23$	$F_{000} = 384$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.606 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Melting point: 481-483 K
<i>a</i> = 6.9261 (4) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 10.1857 (6) Å	Cell parameters from 4635 reflections
c = 11.6303 (6) Å	$\theta = 1.8 - 30.0^{\circ}$
$\alpha = 100.829 \ (2)^{\circ}$	$\mu = 2.01 \text{ mm}^{-1}$
$\beta = 97.399 \ (2)^{\circ}$	T = 100.0 (1) K
$\gamma = 92.892 \ (2)^{\circ}$	Block, yellow
$V = 796.81 (8) \text{ Å}^3$	$0.36 \times 0.15 \times 0.12 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer	4635 independent reflections
Radiation source: fine-focus sealed tube	4333 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 30.0^{\circ}$
T = 100.0(1) K	$\theta_{\min} = 1.8^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -14 \rightarrow 14$
$T_{\min} = 0.528, T_{\max} = 0.797$	$l = -16 \rightarrow 16$
18790 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.105$	$w = 1/[\sigma^2(F_o^2) + (0.0521P)^2 + 1.6362P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.14	$(\Delta/\sigma)_{\text{max}} = <0.001$
4635 reflections	$\Delta \rho_{max} = 2.16 \text{ e} \text{ Å}^{-3}$
184 parameters	$\Delta \rho_{min} = -0.83 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
I1	0.46635 (3)	0.14640 (2)	0.24655 (2)	0.02735 (8)
O1	0.1292 (4)	0.6828 (2)	0.0835 (2)	0.0265 (5)
N1	0.3219 (4)	0.2513 (3)	0.6774 (2)	0.0246 (5)

C1	0.3453 (5)	0.2172 (4)	0.7851 (3)	0.0283 (7)
H1A	0.3605	0.1281	0.7900	0.034*
C2	0.3471 (5)	0.3101 (4)	0.8871 (3)	0.0287 (7)
H2A	0.3621	0.2850	0.9604	0.034*
C3	0.3261 (5)	0.4426 (4)	0.8781 (3)	0.0293 (7)
H3A	0.3244	0.5075	0.9458	0.035*
C4	0.3077 (5)	0.4781 (3)	0.7687 (3)	0.0270 (6)
H4A	0.2993	0.5677	0.7632	0.032*
C5	0.3015 (5)	0.3798 (3)	0.6650 (3)	0.0238 (6)
C6	0.2736 (5)	0.4093 (3)	0.5481 (3)	0.0258 (6)
H6A	0.2734	0.3395	0.4837	0.031*
C7	0.2478 (5)	0.5331 (3)	0.5277 (3)	0.0261 (6)
H7A	0.2481	0.6010	0.5935	0.031*
C8	0.2192 (5)	0.5716 (3)	0.4114 (3)	0.0240 (6)
C9	0.2019 (5)	0.7071 (3)	0.4050 (3)	0.0268 (6)
H9A	0.2116	0.7703	0.4749	0.032*
C10	0.1712 (5)	0.7494 (3)	0.2986 (3)	0.0269 (6)
H10A	0.1592	0.8396	0.2969	0.032*
C11	0.1585 (5)	0.6551 (3)	0.1938 (3)	0.0222 (6)
C12	0.1731 (5)	0.5193 (3)	0.1975 (3)	0.0243 (6)
H12A	0.1616	0.4560	0.1275	0.029*
C13	0.2042 (5)	0.4792 (3)	0.3044 (3)	0.0246 (6)
H13A	0.2156	0.3889	0.3057	0.029*
C14	0.1273 (5)	0.8225 (3)	0.0753 (3)	0.0269 (6)
H14A	0.2506	0.8705	0.1130	0.032*
H14B	0.0233	0.8631	0.1145	0.032*
C15	0.0951 (6)	0.8291 (4)	-0.0538 (3)	0.0322 (7)
H15A	0.1122	0.9207	-0.0624	0.048*
H15B	-0.0351	0.7933	-0.0875	0.048*
H15C	0.1875	0.7775	-0.0939	0.048*
C16	0.3131 (6)	0.1419 (3)	0.5723 (3)	0.0306 (7)
H16A	0.4084	0.1630	0.5241	0.046*
H16B	0.1852	0.1326	0.5273	0.046*
H16D	0.3401	0.0594	0.5975	0.046*
O1W	0.9790 (4)	0.0827 (4)	0.3301 (3)	0.0424 (7)
H1W1	0.8765	0.1147	0.3016	0.064*
H2W1	1.0745	0.1130	0.3010	0.064*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02420 (12)	0.01775 (11)	0.03903 (14)	0.00238 (7)	0.00703 (8)	0.00088 (8)
01	0.0389 (13)	0.0160 (10)	0.0252 (11)	-0.0005 (9)	0.0091 (9)	0.0027 (8)
N1	0.0246 (13)	0.0208 (12)	0.0261 (13)	0.0056 (10)	0.0014 (10)	-0.0005 (10)
C1	0.0253 (15)	0.0303 (17)	0.0294 (16)	0.0034 (13)	0.0053 (12)	0.0052 (13)
C2	0.0282 (16)	0.0319 (17)	0.0259 (15)	0.0016 (13)	0.0069 (12)	0.0037 (13)
C3	0.0275 (16)	0.0299 (17)	0.0289 (16)	-0.0004 (13)	0.0080 (13)	-0.0005 (13)
C4	0.0228 (15)	0.0164 (13)	0.0381 (17)	0.0012 (11)	0.0019 (12)	-0.0019 (12)

C5	0.0202 (13)	0.0215 (14)	0.0286 (15)	0.0041 (11)	0.0014 (11)	0.0025 (12)
C6	0.0291 (16)	0.0233 (15)	0.0249 (14)	0.0042 (12)	0.0036 (12)	0.0042 (12)
C7	0.0277 (15)	0.0236 (15)	0.0266 (15)	-0.0001 (12)	0.0021 (12)	0.0054 (12)
C8	0.0223 (14)	0.0207 (14)	0.0268 (15)	0.0037 (11)	-0.0014 (11)	0.0015 (11)
C9	0.0326 (17)	0.0175 (14)	0.0267 (15)	0.0008 (12)	0.0012 (12)	-0.0027 (11)
C10	0.0360 (17)	0.0137 (13)	0.0294 (15)	-0.0009 (12)	0.0062 (13)	0.0002 (11)
C11	0.0234 (14)	0.0175 (13)	0.0261 (14)	0.0002 (11)	0.0075 (11)	0.0028 (11)
C12	0.0280 (15)	0.0161 (13)	0.0274 (14)	0.0022 (11)	0.0092 (12)	-0.0030 (11)
C13	0.0245 (15)	0.0172 (13)	0.0311 (15)	0.0053 (11)	0.0030 (12)	0.0021 (11)
C14	0.0357 (17)	0.0156 (13)	0.0297 (15)	0.0001 (12)	0.0073 (13)	0.0037 (11)
C15	0.048 (2)	0.0227 (16)	0.0302 (16)	0.0060 (14)	0.0148 (15)	0.0080 (13)
C16	0.042 (2)	0.0209 (15)	0.0265 (15)	0.0068 (14)	0.0019 (14)	-0.0004 (12)
O1W	0.0321 (14)	0.060 (2)	0.0382 (15)	0.0036 (13)	0.0045 (11)	0.0178 (14)

Geometric parameters (Å, °)

O1—C11	1.357 (4)	C9—C10	1.381 (5)
O1—C14	1.445 (4)	С9—Н9А	0.9300
N1—C1	1.353 (4)	C10-C11	1.393 (4)
N1—C5	1.357 (4)	C10—H10A	0.9300
N1—C16	1.483 (4)	C11—C12	1.400 (4)
C1—C2	1.370 (5)	C12—C13	1.374 (5)
C1—H1A	0.9300	C12—H12A	0.9300
C2—C3	1.387 (5)	C13—H13A	0.9300
C2—H2A	0.9300	C14—C15	1.504 (5)
C3—C4	1.380 (5)	C14—H14A	0.9700
С3—НЗА	0.9300	C14—H14B	0.9700
C4—C5	1.410 (5)	C15—H15A	0.9600
C4—H4A	0.9300	C15—H15B	0.9600
C5—C6	1.438 (5)	C15—H15C	0.9600
C6—C7	1.342 (5)	C16—H16A	0.9600
С6—Н6А	0.9300	C16—H16B	0.9600
C7—C8	1.470 (5)	C16—H16D	0.9600
С7—Н7А	0.9300	O1W—H1W1	0.8501
C8—C13	1.401 (5)	O1W—H2W1	0.8500
C8—C9	1.406 (4)		
C11—O1—C14	116.9 (3)	C9—C10—C11	119.0 (3)
C1—N1—C5	121.6 (3)	C9—C10—H10A	120.5
C1—N1—C16	117.5 (3)	C11-C10-H10A	120.5
C5—N1—C16	120.8 (3)	O1—C11—C10	125.1 (3)
N1—C1—C2	121.9 (3)	O1—C11—C12	114.9 (3)
N1—C1—H1A	119.1	C10-C11-C12	120.0 (3)
C2—C1—H1A	119.1	C13—C12—C11	120.1 (3)
C1—C2—C3	118.2 (3)	C13—C12—H12A	119.9
C1—C2—H2A	120.9	C11—C12—H12A	119.9
С3—С2—Н2А	120.9	C12—C13—C8	121.4 (3)
C4—C3—C2	119.9 (3)	C12—C13—H13A	119.3
С4—С3—НЗА	120.0	C8—C13—H13A	119.3
С2—С3—НЗА	120.0	O1-C14-C15	107.6 (3)

C3—C4—C5	120.5 (3)	O1-C14-H14A	110.2
C3—C4—H4A	119.7	C15—C14—H14A	110.2
C5—C4—H4A	119.7	O1-C14-H14B	110.2
N1—C5—C4	117.7 (3)	C15—C14—H14B	110.2
N1—C5—C6	119.0 (3)	H14A—C14—H14B	108.5
C4—C5—C6	123.3 (3)	C14—C15—H15A	109.5
C7—C6—C5	122.9 (3)	C14—C15—H15B	109.5
С7—С6—Н6А	118.5	H15A—C15—H15B	109.5
С5—С6—Н6А	118.5	C14—C15—H15C	109.5
C6—C7—C8	126.3 (3)	H15A—C15—H15C	109.5
С6—С7—Н7А	116.9	H15B—C15—H15C	109.5
С8—С7—Н7А	116.9	N1-C16-H16A	109.5
C13—C8—C9	117.3 (3)	N1-C16-H16B	109.5
C13—C8—C7	123.3 (3)	H16A—C16—H16B	109.5
C9—C8—C7	119.4 (3)	N1-C16-H16D	109.5
C10—C9—C8	122.3 (3)	H16A—C16—H16D	109.5
С10—С9—Н9А	118.9	H16B—C16—H16D	109.5
С8—С9—Н9А	118.9	H1W1—O1W—H2W1	107.7
C5—N1—C1—C2	0.8 (5)	C6—C7—C8—C9	-177.4 (4)
C16—N1—C1—C2	-177.3 (3)	C13—C8—C9—C10	0.1 (5)
N1-C1-C2-C3	-0.6 (5)	C7—C8—C9—C10	-178.8 (3)
C1—C2—C3—C4	-1.2 (5)	C8—C9—C10—C11	-0.6 (5)
C2—C3—C4—C5	2.8 (5)	C14—O1—C11—C10	5.3 (5)
C1—N1—C5—C4	0.8 (5)	C14—O1—C11—C12	-175.7 (3)
C16—N1—C5—C4	178.8 (3)	C9-C10-C11-O1	-179.8 (3)
C1—N1—C5—C6	-178.9 (3)	C9—C10—C11—C12	1.2 (5)
C16—N1—C5—C6	-0.8 (5)	O1—C11—C12—C13	179.5 (3)
C3—C4—C5—N1	-2.5 (5)	C10-C11-C12-C13	-1.5 (5)
C3—C4—C5—C6	177.1 (3)	C11—C12—C13—C8	1.0 (5)
N1-C5-C6-C7	178.5 (3)	C9—C8—C13—C12	-0.3 (5)
C4—C5—C6—C7	-1.1 (5)	C7—C8—C13—C12	178.5 (3)
C5—C6—C7—C8	179.8 (3)	C11—O1—C14—C15	179.4 (3)
C6—C7—C8—C13	3.8 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
O1W—H1W1…I1	0.85	2.88	3.681 (3)	158
O1W—H2W1…I1 ⁱ	0.85	2.88	3.690 (3)	159
C16—H16B···O1W ⁱⁱ	0.96	2.49	3.346 (5)	148
Symmetry codes: (i) <i>x</i> +1, <i>y</i> , <i>z</i> ; (ii) <i>x</i> -1, <i>y</i> , <i>z</i> .				

Fig. 1

